

National Centre for Research and Development

GEOTHERMAL WORKING FLUIDS AND ITS PROPERTIES – RESEARCH ON THE DEVELOPMENT OF ENHANCED GEOTHERMAL SYSTEMS TECHNOLOGY

Maciej Szymanek¹, Anna Sowiżdżał¹, Jacob Stang², Anders Austegard²

ABSTRACT

Climate change is being more and more noticeable throughout the world. Burning fossil fuels emits greenhouse gases, including CO_2 , into the atmosphere, which has a negative impact on climate change. The solution to reducing global emissions is to use renewable energy sources such as geothermal energy. Enhanced Geothermal Systems enable the use of geothermal energy stored in hot dry rocks. The energy stored in deep reservoirs can be extracted using a proper geothermal fluid. The most common is water, but CO_2 is increasing in popularity. Its features such as lower viscosity and higher density allows to penetrate deeper into a rock mass and reduce power consumption for circulating pumps. What is more, utilization of CO_2 has the advantage of geological storage in situ, which reduces the global emissions. There are also a few analysis of nitrogen utilization, but heat extraction is predicted to be similar as for CO_2 . A new research of supercritical CO_2 utilization in EGS is being investigated in EnerGizerS project. The Vapor-Liquid Equilibrium of CO_2 and water at high pressure and temperature (up to 1000 bar and 200°C) is a subject of experimental campaign conducted in cooperation with SINTEF Energy Research.

¹AGH University of Science and Technology, ²SINTEF Energy Research

THEORY

Fluid properties	CO2	H ₂ O	
Chemical	No mineral dissolution, scaling or precipitation problems. A poor solvent for rock minerals, with no potentially strong chemical reactions.	Serious problems of mineral dissolution, scaling and/or precipitation. A good solvent for rock minerals that could have potentially strong chemical reactions between the rock and aquifers.	
Fluid circulationin wells	Highly compressible and expandable . A larger wellbore diameter is needed to inject CO_2 (costly).	Low compressibility and expandability. A smaller wellbore diameter is needed to inject H ₂ O.	
Ease of flow in the geothermal reservoir	Due to its lower viscosity - high flow capacity, high mobility, high mass rate and larger flow velocities for a given pressure gradient. High density. The much higher thermal expansivity of CO_2 would generate large Density differences between the cold CO_2 in the injection well and the hot CO_2 in the production well, and would provide a buoyancy force that would reduce the power consumption of the fluid circulation system.	Due to its higher viscosity -low flow capacity, low mobility, low mass rate and shorter flow velocities for a given pressure gradient. Low density. The much lower thermal expansivity of H_2O would generate small density differences between the cold H_2O in the injection well and the hot H_2O in the production well, and would not provide a buoyancy effect that would reduce the power consumption of the fluid circulation system.	
Heat transmission	Low specific heat level and low mass heat capacity. The outlet temperature at the production wellhead is much lower than for water. CO_2 is considerably more mobile than water, so for a given pressure gradient it would flow at higher mass rates than water. This effect offsets the lower specific heat of CO_2 and produces higher extraction rates for CO_2 than for water.	capacity. The outlet temperature at the production wellhead is much higher than CO_2 . H_2O is considerably less mobile than CO_2 , so for a given pressure gradient it would flow at lower mass rates than CO_2 . This effect offsets the higher specific heat of H_2O and produces lower extraction rates for	
Fluid losses	Could result in beneficial geological storage of CO ₂ .	A hindrance for the development of geothermal reservoirs (costly).	

METHODOLOGY

The High Pressure and Complex – Phase Equilibrium facility is employing an analytical isothermal technique to measure phase equilibria. It allows to accurately measure a variety of fluids at a wide pressure and temperature range. A mixture, which accurate total composition may not be known, is brought into a Vapor-Liquid Equilibrium cell with carefully controlled temperature and pressure. When phase equilibrium is reached, the fluid phases present in the cell are sampled from. Composition of the mixture is analysed in Gas Chromatograph.

Soc for the results allows for accurate interpretation and fitting to other research

CURRENT RESULTS

Table of base statistics – consistency of the results for measurement point at 50°C, 120 bar

50°C, 120 bar	Average	Standard deviation	Variance
All data	0.47985%	0.007%	1.4877%
Excl. min and max	0.47933%	0.00485%	1.01248%

Source: Olasolo et al. 2018

Phase equilibrium of water and CO₂ at 200°C, from EOS-CG implemented in TREND

Maciej Szymanek, PhD student at AGH UST, working with HPC-PE facility during reserach stay in SINTEF Energy Research

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the Norway Grants 2014-2021 via the National Centre for Research and Development. The results are part of the Polish-Norwegian project: CO₂ -Enhanced Geothermal Systems for Climate Neutral Energy Supply, acronym EnerGizerS, registration number NOR/POLNOR/EnerGizerS/0036/2019.

Working together for a green, competitive and inclusive Europe

